MathDB
Problems
Contests
National and Regional Contests
Canada Contests
Canada National Olympiad
1974 Canada National Olympiad
3
3
Part of
1974 Canada National Olympiad
Problems
(1)
Coefficients of a polynomial
Source: Canada 1974/3
1/13/2007
Let
f
(
x
)
=
a
0
+
a
1
x
+
a
2
x
2
+
⋯
+
a
n
x
n
f(x) = a_{0}+a_{1}x+a_{2}x^{2}+\cdots+a_{n}x^{n}
f
(
x
)
=
a
0
+
a
1
x
+
a
2
x
2
+
⋯
+
a
n
x
n
be a polynomial with coefficients satisfying the conditions: 0\le a_{i}\le a_{0}, i=1,2,\ldots,n. Let
b
0
,
b
1
,
…
,
b
2
n
b_{0},b_{1},\ldots,b_{2n}
b
0
,
b
1
,
…
,
b
2
n
be the coefficients of the polynomial \begin{align*}\left(f(x)\right)^{2}&= \left(a_{0}+a_{1}x+a_{2}x^{2}+\cdots a_{n}x^{n}\right)\\ &= b_{0}+b_{1}x+b_{2}x^{2}+\cdots+b_{2n}x^{2n}. \end{align*} Prove that
b
n
+
1
≤
1
2
(
f
(
1
)
)
2
b_{n+1}\le \frac{1}{2}\left(f(1)\right)^{2}
b
n
+
1
≤
2
1
(
f
(
1
)
)
2
.
algebra
polynomial