MathDB

Problems(5)

Problem 2 of First round

Source: I International Festival of Young Mathematicians Sozopol 2010, Theme for 10-12 grade

12/13/2019
Let A1A2A3A4A5A6A7A8A_1A_2A_3A_4A_5A_6A_7A_8 be a right octagon with center OO and λ1\lambda_1,λ2\lambda_2, λ3\lambda_3, λ4\lambda_4 be some rational numbers for which: λ1OA1+λ2OA2+λ3OA3+λ4OA4=o\lambda_1 \overrightarrow{OA_1}+\lambda_2 \overrightarrow{OA_2}+\lambda_3 \overrightarrow{OA_3}+\lambda_4 \overrightarrow{OA_4} =\overrightarrow{o}. Prove that λ1=λ2=λ3=λ4=0\lambda_1=\lambda_2=\lambda_3=\lambda_4=0.
geometryoctagonVectorsvector
Problem 2 of Second round

Source: I International Festival of Young Mathematicians Sozopol 2010, Theme for 10-12 grade

12/14/2019
Is it possible to color the cells of a table 19 x 19 in yellow, blue, red, and green so that each rectangle aa x bb (a,b2a,b\geq 2) in the table has at least 2 cells in different color?
combinatoricstableColoring
Problem 2 of Third round

Source: I International Festival of Young Mathematicians Sozopol 2010, Theme for 10-12 grade

12/14/2019
Let ABCDABCD be a quadrilateral, with an inscribed circle with center II. Through AA are constructed perpendiculars to ABAB and ADAD, which intersect BIBI and DIDI in points MM and NN respectively. Prove that MNACMN\perp AC.
geometry
Function

Source:

6/5/2016
Known f:N0N0f:\mathbb{N}_0 \to \mathbb{N}_0 function for x,yN0\forall x,y\in \mathbb{N}_0 the following terms are paid (a).f(0,y)=y+1(a). f(0,y)=y+1 (b).f(x+1,0)=f(x,1)(b). f(x+1,0)=f(x,1) (c).f(x+1,y+1)=f(x,f(x+1,y)).(c). f(x+1,y+1)=f(x,f(x+1,y)). Find the value if f(4,1981)f(4,1981)
function
Find the biggest value

Source:

7/18/2011
If a,b,c>0a,b,c>0 and abc=3abc=3,find the biggest value of:
a2b2a7+a3b3c+b7+b2c2b7+b3c3a+c7+c2a2c7+c3a3b+a7\frac{a^2b^2}{a^7+a^3b^3c+b^7}+\frac{b^2c^2}{b^7+b^3c^3a+c^7}+\frac{c^2a^2}{c^7+c^3a^3b+a^7}
inequalitiesinequalities unsolved