MathDB
Problems
Contests
National and Regional Contests
Bulgaria Contests
Bulgaria National Olympiad
1987 Bulgaria National Olympiad
Problem 1
Problem 1
Part of
1987 Bulgaria National Olympiad
Problems
(1)
bounding root of polynomial
Source: Bulgaria 1987 P1
6/15/2021
Let
f
(
x
)
=
x
n
+
a
1
x
n
−
1
+
…
+
a
n
(
n
≥
3
)
f(x)=x^n+a_1x^{n-1}+\ldots+a_n~(n\ge3)
f
(
x
)
=
x
n
+
a
1
x
n
−
1
+
…
+
a
n
(
n
≥
3
)
be a polynomial with real coefficients and
n
n
n
real roots, such that
a
n
−
1
a
n
>
n
+
1
\frac{a_{n-1}}{a_n}>n+1
a
n
a
n
−
1
>
n
+
1
. Prove that if
a
n
−
2
=
0
a_{n-2}=0
a
n
−
2
=
0
, then at least one root of
f
(
x
)
f(x)
f
(
x
)
lies in the open interval
(
−
1
2
,
1
n
+
1
)
\left(-\frac12,\frac1{n+1}\right)
(
−
2
1
,
n
+
1
1
)
.
algebra
Polynomials
Sequences
polynomial