MathDB

2020 Olympic Revenge

Part of Olympic Revenge

Subcontests

(5)
2
1

Pseudo-determinant functions in finite field

For a positive integer nn, we say an nn-shuffling is a bijection σ:{1,2,,n}{1,2,,n}\sigma: \{1,2, \dots , n\} \rightarrow \{1,2, \dots , n\} such that there exist exactly two elements ii of {1,2,,n}\{1,2, \dots , n\} such that σ(i)i\sigma(i) \neq i.
Fix some three pairwise distinct nn-shufflings σ1,σ2,σ3\sigma_1,\sigma_2,\sigma_3. Let qq be any prime, and let Fq\mathbb{F}_q be the integers modulo qq. Consider all functions f:(Fqn)nFqf:(\mathbb{F}_q^n)^n\to\mathbb{F}_q that satisfy, for all integers ii with 1in1 \leq i \leq n and all x1,xi1,xi+1,,xn,y,zFqnx_1,\ldots x_{i-1},x_{i+1}, \dots ,x_n, y, z\in\mathbb{F}_q^n, f(x1,,xi1,y,xi+1,,xn)+f(x1,,xi1,z,xi+1,,xn)=f(x1,,xi1,y+z,xi+1,,xn),f(x_1, \ldots ,x_{i-1}, y, x_{i+1}, \ldots , x_n) +f(x_1, \ldots ,x_{i-1}, z, x_{i+1}, \ldots , x_n) = f(x_1, \ldots ,x_{i-1}, y+z, x_{i+1}, \ldots , x_n), and that satisfy, for all x1,,xnFqnx_1,\ldots,x_n\in\mathbb{F}_q^n and all σ{σ1,σ2,σ3}\sigma\in\{\sigma_1,\sigma_2,\sigma_3\}, f(x1,,xn)=f(xσ(1),,xσ(n)).f(x_1,\ldots,x_n)=-f(x_{\sigma(1)},\ldots,x_{\sigma(n)}). For a given tuple (x1,,xn)(Fqn)n(x_1,\ldots,x_n)\in(\mathbb{F}_q^n)^n, let g(x1,,xn)g(x_1,\ldots,x_n) be the number of different values of f(x1,,xn)f(x_1,\ldots,x_n) over all possible functions ff satisfying the above conditions. Pick (x1,,xn)(Fqn)n(x_1,\ldots,x_n)\in(\mathbb{F}_q^n)^n uniformly at random, and let ε(q,σ1,σ2,σ3)\varepsilon(q,\sigma_1,\sigma_2,\sigma_3) be the expected value of g(x1,,xn)g(x_1,\ldots,x_n). Finally, let κ(σ1,σ2,σ3)=limqlogq(ln(ε(q,σ1,σ2,σ3)1q1)).\kappa(\sigma_1,\sigma_2,\sigma_3)=-\lim_{q \to \infty}\log_q\left(-\ln\left(\frac{\varepsilon(q,\sigma_1,\sigma_2,\sigma_3)-1}{q-1}\right)\right).
Pick three pairwise distinct nn-shufflings σ1,σ2,σ3\sigma_1,\sigma_2,\sigma_3 uniformly at random from the set of all nn-shufflings. Let π(n)\pi(n) denote the expected value of κ(σ1,σ2,σ3)\kappa(\sigma_1,\sigma_2,\sigma_3). Suppose that p(x)p(x) and q(x)q(x) are polynomials with real coefficients such that q(3)0q(-3) \neq 0 and such that π(n)=p(n)q(n)\pi(n)=\frac{p(n)}{q(n)} for infinitely many positive integers nn. Compute p(3)q(3)\frac{p\left(-3\right)}{q\left(-3\right)}.