MathDB

2009 Olympic Revenge

Part of Olympic Revenge

Subcontests

(6)
6
1

VIII Brazilian Olympic Revenge, 2009 - Problem 6

Let a,nZ+a, n \in \mathbb{Z}^{*}_{+}. aa is defined inductively in the base nn-recursive. We first write aa in the base nn, e.g., as a sum of terms of the form ktntk_tn^t, with 0kt<n0 \le k_t < n. For each exponent tt, we write tt in the base nn-recursive, until all the numbers in the representation are less than nn. For instance,
1309=36+2.35+1.34+1.32+1.3+11309 = 3^6 + 2.3^5 + 1.3^4 + 1.3^2 + 1.3 + 1
=32.3+2.33+2+1.33+1+1.32+1 = 3^{2.3} + 2.3^{3+2} + 1.3^{3+1} + 1.3^2 + 1
Let x1Zx_1 \in \mathbb{Z} arbitrary. We define xnx_n recursively, as following: if xn1>0x_{n-1} > 0, we write xn1x_{n-1} in the base nn-recursive and we replace all the numbers nn for n+1n+1 (even the exponents!), so we obtain the successor of xnx_n. If xn1=0x_{n-1} = 0, then xn=0x_n = 0.
Example:
x1=222+2+1+22+1+2+1x_1 = 2^{2^{2} + 2 + 1} + 2^{2+1} + 2 + 1
x2=333+3+1+33+1+3\Rightarrow x_2 = 3^{3^{3} + 3 + 1} + 3^{3+1} + 3
x3=444+4+1+44+1+3\Rightarrow x_3 = 4^{4^{4} + 4 + 1} + 4^{4+1} + 3
x4=555+5+1+55+1+2\Rightarrow x_4 = 5^{5^{5} + 5 + 1} + 5^{5+1} + 2
x5=666+6+1+66+1+1\Rightarrow x_5 = 6^{6^{6} + 6 + 1} + 6^{6+1} + 1
x6=777+7+1+77+1\Rightarrow x_6 = 7^{7^{7} + 7 + 1} + 7^{7+1}
x7=888+8+1+7.88+7.87+7.86+...+7\Rightarrow x_7 = 8^{8^{8} + 8 + 1} + 7.8^8 + 7.8^7 + 7.8^6 + ... + 7
..
..
..
Prove that N:xN=0\exists N : x_N = 0.