MathDB
Problems
Contests
National and Regional Contests
Brazil Contests
Brazil National Olympiad
1979 Brazil National Olympiad
1
1
Part of
1979 Brazil National Olympiad
Problems
(1)
Sine functions and intervals
Source: 1st Brazilian MO, 1979, Problem 1 (from Kalva backup)
12/23/2017
Show that if
a
<
b
a < b
a
<
b
are in the interval
[
0
,
π
2
]
\left[0, \frac{\pi}{2}\right]
[
0
,
2
π
]
then
a
−
sin
a
<
b
−
sin
b
a - \sin a < b - \sin b
a
−
sin
a
<
b
−
sin
b
. Is this true for
a
<
b
a < b
a
<
b
in the interval
[
π
,
3
π
2
]
\left[\pi,\frac{3\pi}{2}\right]
[
π
,
2
3
π
]
?
Brazilian Math Olympiad
trigonometry
function
inequalities
algebra
Brazilian Math Olympiad 1979