MathDB

Problems(4)

Regional Olympiad - FBH 2018 Grade 9 Problem 3

Source: Regional Olympiad - Federation of Bosnia and Herzegovina 2018

9/18/2018
Let pp and qq be prime numbers such that p2+pq+q2p^2+pq+q^2 is perfect square. Prove that p2pq+q2p^2-pq+q^2 is prime
number theoryprime numbersPerfect Square
Regional Olympiad - FBH 2018 Grade 10 Problem 3

Source: Regional Olympiad - Federation of Bosnia and Herzegovina 2018

9/18/2018
Solve equation xx+{x}=2018x \lfloor{x}\rfloor+\{x\}=2018, where xx is real number
algebraequationfloor functionfrac function
Regional Olympiad - FBH 2018 Grade 11 Problem 3

Source: Regional Olympiad - Federation of Bosnia and Herzegovina 2018

9/18/2018
In triangle ABCABC given is point PP such that ACP=ABP=10\angle ACP = \angle ABP = 10^{\circ}, CAP=20\angle CAP = 20^{\circ} and BAP=30\angle BAP = 30^{\circ}. Prove that AC=BCAC=BC
geometryTriangleisosceles
Regional Olympiad - FBH 2018 Grade 12 Problem 3

Source: Regional Olympiad - Federation of Bosnia and Herzegovina 2018

9/18/2018
If numbers x1x_1, x2x_2,...,xnx_n are from interval (14,1)\left( \frac{1}{4},1 \right) prove the inequality: logx1(x214)+logx2(x314)+...+logxn1(xn14)+logxn(x114)2n\log _{x_1} {\left(x_2-\frac{1}{4} \right)} + \log _{x_2} {\left(x_3-\frac{1}{4} \right)}+ ... + \log _{x_{n-1}} {\left(x_n-\frac{1}{4} \right)} + \log _{x_n} {\left(x_1-\frac{1}{4} \right)} \geq 2n
inequalitiesalgebralogarithms