Problems(3)
Nice inequality
Source: Federation of Bosnia, 1. Grades 2008.
4/23/2008
For arbitrary reals , and prove the following inequality:
x^{2} \plus{} y^{2} \plus{} z^{2} \minus{} xy \minus{} yz \minus{} zx \geq \max \{\frac {3(x \minus{} y)^{2}}{4} , \frac {3(y \minus{} z)^{2}}{4} , \frac {3(y \minus{} z)^{2}}{4} \}
inequalities
Easy inequality
Source: 0
4/23/2008
IF , and are positive reals such that a^{2}\plus{}b^{2}\plus{}c^{2}\equal{}1 prove the inequality: \frac{a^{5}\plus{}b^{5}}{ab(a\plus{}b)}\plus{} \frac {b^{5}\plus{}c^{5}}{bc(b\plus{}c)}\plus{}\frac {c^{5}\plus{}a^{5}}{ca(a\plus{}b)}\geq 3(ab\plus{}bc\plus{}ca)\minus{}2.
inequalitiesfunction
Nice and easy
Source: 0
4/24/2008
If , and are positive reals prove inequality: \left(1\plus{}\frac{4a}{b\plus{}c}\right)\left(1\plus{}\frac{4b}{a\plus{}c}\right)\left(1\plus{}\frac{4c}{a\plus{}b}\right) > 25.
inequalitieslogarithmscircumcircleHigh school olympiadBosniaalgebra