MathDB
Problems
Contests
National and Regional Contests
Belgium Contests
Flanders Math Olympiad
1991 Flanders Math Olympiad
2
2
Part of
1991 Flanders Math Olympiad
Problems
(1)
nice one (precalculus)
Source: flanders '91
9/27/2005
(a) Show that for every
n
∈
N
n\in\mathbb{N}
n
∈
N
there is exactly one
x
∈
R
+
x\in\mathbb{R}^+
x
∈
R
+
so that
x
n
+
x
n
+
1
=
1
x^n+x^{n+1}=1
x
n
+
x
n
+
1
=
1
. Call this
x
n
x_n
x
n
. (b) Find
lim
n
→
+
∞
x
n
\lim\limits_{n\rightarrow+\infty}x_n
n
→
+
∞
lim
x
n
.
limit
algebra
polynomial