MathDB
Problems
Contests
National and Regional Contests
Belgium Contests
Flanders Math Olympiad
1989 Flanders Math Olympiad
3
3
Part of
1989 Flanders Math Olympiad
Problems
(1)
Easy Trig
Source:
8/9/2004
Show that:
α
=
±
π
12
+
k
⋅
π
2
(
k
∈
Z
)
⟺
∣
tan
α
∣
+
∣
cot
α
∣
=
4
\alpha = \pm \frac{\pi}{12} + k\cdot \frac{\pi}2 (k\in \mathbb{Z}) \Longleftrightarrow\ |{\tan \alpha}| + |{\cot \alpha}| = 4
α
=
±
12
π
+
k
⋅
2
π
(
k
∈
Z
)
⟺
∣
tan
α
∣
+
∣
cot
α
∣
=
4
trigonometry
absolute value