MathDB
Problems
Contests
National and Regional Contests
Belgium Contests
Flanders Junior Olympiad
2005 Flanders Junior Olympiad
4
4
Part of
2005 Flanders Junior Olympiad
Problems
(1)
Some geo
Source: flanders junior olympiad '05
4/25/2005
(a) Be M an internal point of the convex quadrilateral ABCD. Prove that
∣
M
A
∣
+
∣
M
B
∣
<
∣
A
D
∣
+
∣
D
C
∣
+
∣
C
B
∣
|MA|+|MB| < |AD|+|DC|+|CB|
∣
M
A
∣
+
∣
MB
∣
<
∣
A
D
∣
+
∣
D
C
∣
+
∣
CB
∣
. (b) Be M an internal point of the triangle ABC. Note
k
=
min
(
∣
M
A
∣
,
∣
M
B
∣
,
∣
M
C
∣
)
k=\min(|MA|,|MB|,|MC|)
k
=
min
(
∣
M
A
∣
,
∣
MB
∣
,
∣
MC
∣
)
. Prove
k
+
∣
M
A
∣
+
∣
M
B
∣
+
∣
M
C
∣
<
∣
A
B
∣
+
∣
B
C
∣
+
∣
C
A
∣
k+|MA|+|MB|+|MC|<|AB|+|BC|+|CA|
k
+
∣
M
A
∣
+
∣
MB
∣
+
∣
MC
∣
<
∣
A
B
∣
+
∣
BC
∣
+
∣
C
A
∣
.
IMO Shortlist