Consider a board of a×b, with a and b integers greater than or equal to 2. Initially their squares are colored black and white like a chess board. The permitted operation consists of choosing two squares with a common side and recoloring them as follows: a white square becomes black; a black box turns green; a green box turns white. Determine for which values of a and b it is possible, by a succession of allowed operations, to make all the squares that were initially white end black and all the squares that were initially black end white. Clarification: Initially there are no green squares, but they appear after the first operation. combinatoricsColoringChessboard