MathDB
Problems
Contests
National and Regional Contests
Argentina Contests
Argentina National Olympiad
2003 Argentina National Olympiad
1
1
Part of
2003 Argentina National Olympiad
Problems
(1)
1/ [x] - 1/[2x]= 1/6{x}
Source: Argentina 2003 OMA L3 p1
5/12/2024
Find all positive numbers
x
x
x
such that:
1
[
x
]
−
1
[
2
x
]
=
1
6
{
x
}
\frac{1}{[x]}-\frac{1}{[2x]}=\frac{1}{6\{x\}}
[
x
]
1
−
[
2
x
]
1
=
6
{
x
}
1
where
[
x
]
[x]
[
x
]
represents the integer part of
x
x
x
and
{
x
}
=
x
−
[
x
]
\{x\}=x-[x]
{
x
}
=
x
−
[
x
]
.
floor function
algebra
fractional part