Problems(1)
Let a1,a2,… be a strictly increasing sequence of positive integers, such that for any positive integer n, an is not representable in the for ∑i=1n−1ciai for ci∈{0,1}. For every positive integer m, let f(m) denote the number of ai that are at most m. Show that for any positive integers m,k, we have that f(m)≤ak+k+1m. algebra