MathDB
Problems
Contests
International Contests
Silk Road
2020 Silk Road
3
3
Part of
2020 Silk Road
Problems
(1)
(-1)^dP (-x), powerful + non-increasing polynomials with real coefficients
Source: SRMC 2020 P3 - Silk Road
8/18/2020
A polynomial
Q
(
x
)
=
k
n
x
n
+
k
n
−
1
x
n
−
1
+
…
+
k
1
x
+
k
0
Q (x) = k_n x ^ n + k_ {n-1} x ^ {n-1} + \ldots + k_1 x + k_0
Q
(
x
)
=
k
n
x
n
+
k
n
−
1
x
n
−
1
+
…
+
k
1
x
+
k
0
with real coefficients is called powerful if the equality
∣
k
0
∣
=
∣
k
1
∣
+
∣
k
2
∣
+
…
+
∣
k
n
−
1
∣
+
∣
k
n
∣
| k_0 | = | k_1 | + | k_2 | + \ldots + | k_ {n-1} | + | k_n |
∣
k
0
∣
=
∣
k
1
∣
+
∣
k
2
∣
+
…
+
∣
k
n
−
1
∣
+
∣
k
n
∣
, and non-increasing , if
k
0
≥
k
1
≥
…
≥
k
n
−
1
≥
k
n
k_0 \geq k_1 \geq \ldots \geq k_ {n-1} \geq k_n
k
0
≥
k
1
≥
…
≥
k
n
−
1
≥
k
n
. Let for the polynomial
P
(
x
)
=
a
d
x
d
+
a
d
−
1
x
d
−
1
+
…
+
a
1
x
+
a
0
P (x) = a_d x ^ d + a_ {d-1} x ^ {d-1} + \ldots + a_1 x + a_0
P
(
x
)
=
a
d
x
d
+
a
d
−
1
x
d
−
1
+
…
+
a
1
x
+
a
0
with nonzero real coefficients, where
a
d
>
0
a_d> 0
a
d
>
0
, the polynomial
P
(
x
)
(
x
−
1
)
t
(
x
+
1
)
s
P (x) (x-1) ^ t (x + 1) ^ s
P
(
x
)
(
x
−
1
)
t
(
x
+
1
)
s
is powerful for some non-negative integers
s
s
s
and
t
t
t
(
s
+
t
>
0
s + t> 0
s
+
t
>
0
). Prove that at least one of the polynomials
P
(
x
)
P (x)
P
(
x
)
and
(
−
1
)
d
P
(
−
x
)
(- 1) ^ d P (-x)
(
−
1
)
d
P
(
−
x
)
is nonincreasing.
algebra
polynomial