MathDB
Problems
Contests
International Contests
Romanian Masters of Mathematics Collection
2009 Romanian Master of Mathematics
2009 Romanian Master of Mathematics
Part of
Romanian Masters of Mathematics Collection
Subcontests
(4)
4
1
Hide problems
There exists at least one finite set T of positive integers
For a finite set
X
X
X
of positive integers, let \Sigma(X) \equal{} \sum_{x \in X} \arctan \frac{1}{x}. Given a finite set
S
S
S
of positive integers for which
Σ
(
S
)
<
π
2
,
\Sigma(S) < \frac{\pi}{2},
Σ
(
S
)
<
2
π
,
show that there exists at least one finite set
T
T
T
of positive integers for which
S
⊂
T
S \subset T
S
⊂
T
and \Sigma(S) \equal{} \frac{\pi}{2}.Kevin Buzzard, United Kingdom
3
1
Hide problems
Prove that the four lines AiOi are concurrent or parallel
Given four points
A
1
,
A
2
,
A
3
,
A
4
A_1, A_2, A_3, A_4
A
1
,
A
2
,
A
3
,
A
4
in the plane, no three collinear, such that A_1A_2 \cdot A_3 A_4 \equal{} A_1 A_3 \cdot A_2 A_4 \equal{} A_1 A_4 \cdot A_2 A_3, denote by
O
i
O_i
O
i
the circumcenter of
△
A
j
A
k
A
l
\triangle A_j A_k A_l
△
A
j
A
k
A
l
with \{i,j,k,l\} \equal{} \{1,2,3,4\}. Assuming
∀
i
A
i
≠
O
i
,
\forall i A_i \neq O_i ,
∀
i
A
i
=
O
i
,
prove that the four lines
A
i
O
i
A_iO_i
A
i
O
i
are concurrent or parallel.Nikolai Ivanov Beluhov, Bulgaria
2
1
Hide problems
Number of points in space bounded from above
A set
S
S
S
of points in space satisfies the property that all pairwise distances between points in
S
S
S
are distinct. Given that all points in
S
S
S
have integer coordinates
(
x
,
y
,
z
)
(x,y,z)
(
x
,
y
,
z
)
where
1
≤
x
,
y
,
z
≤
n
,
1 \leq x,y, z \leq n,
1
≤
x
,
y
,
z
≤
n
,
show that the number of points in
S
S
S
is less than \min \Big((n \plus{} 2)\sqrt {\frac {n}{3}}, n \sqrt {6}\Big).Dan Schwarz, Romania
1
1
Hide problems
Multiple of multinomial coefficient is an integer
For a_i \in \mathbb{Z}^ \plus{}, i \equal{} 1, \ldots, k, and n \equal{} \sum^k_{i \equal{} 1} a_i, let d \equal{} \gcd(a_1, \ldots, a_k) denote the greatest common divisor of
a
1
,
…
,
a
k
a_1, \ldots, a_k
a
1
,
…
,
a
k
. Prove that \frac {d} {n} \cdot \frac {n!}{\prod\limits^k_{i \equal{} 1} (a_i!)} is an integer.Dan Schwarz, Romania