MathDB
Problems
Contests
International Contests
Rioplatense Mathematical Olympiad, Level 3
2019 Rioplatense Mathematical Olympiad, Level 3
6
6
Part of
2019 Rioplatense Mathematical Olympiad, Level 3
Problems
(1)
Sequence of integers
Source: Rioplatense Olympiad L3 2019
12/10/2019
Let
α
>
1
\alpha>1
α
>
1
be a real number such that the sequence
a
n
=
α
⌊
α
n
⌋
−
⌊
α
n
+
1
⌋
a_n=\alpha\lfloor \alpha^n\rfloor- \lfloor \alpha^{n+1}\rfloor
a
n
=
α
⌊
α
n
⌋
−
⌊
α
n
+
1
⌋
, with
n
≥
1
n\geq 1
n
≥
1
, is periodic, that is, there is a positive integer
p
p
p
such that
a
n
+
p
=
a
n
a_{n+p}=a_n
a
n
+
p
=
a
n
for all
n
n
n
. Prove that
α
\alpha
α
is an integer.
algebra
number theory