MathDB
Problems
Contests
International Contests
Rioplatense Mathematical Olympiad, Level 3
2002 Rioplatense Mathematical Olympiad, Level 3
2
2
Part of
2002 Rioplatense Mathematical Olympiad, Level 3
Problems
(1)
if 0 <\sqrt {2002} - \frac {a}{b} <\frac {\lambda}{ab}, prove \lambda \geq 5
Source: Rioplatense Olympiad 2002 level 3 P2
1/8/2019
Let
λ
\lambda
λ
be a real number such that the inequality
0
<
2002
−
a
b
<
λ
a
b
0 <\sqrt {2002} - \frac {a} {b} <\frac {\lambda} {ab}
0
<
2002
−
b
a
<
ab
λ
holds for an infinite number of pairs
(
a
,
b
)
(a, b)
(
a
,
b
)
of positive integers. Prove that
λ
≥
5
\lambda \geq 5
λ
≥
5
.
Inequality
Integers
positive integers
number theory
algebra