MathDB
Problems
Contests
International Contests
Rioplatense Mathematical Olympiad, Level 3
2001 Rioplatense Mathematical Olympiad, Level 3
6
6
Part of
2001 Rioplatense Mathematical Olympiad, Level 3
Problems
(1)
for every n, exists a number that appears n times in sequence f(m)=m+S(m)
Source: Rioplatense Olympiad 2001 level 3 P6
9/6/2018
For
m
=
1
,
2
,
3
,
.
.
.
m = 1, 2, 3, ...
m
=
1
,
2
,
3
,
...
denote
S
(
m
)
S(m)
S
(
m
)
the sum of the digits of
m
m
m
, and let
f
(
m
)
=
m
+
S
(
m
)
f(m)=m+S(m)
f
(
m
)
=
m
+
S
(
m
)
. Show that for each positive integer
n
n
n
, there exists a number that appears exactly
n
n
n
times in the sequence
f
(
1
)
,
f
(
2
)
,
.
.
.
,
f
(
m
)
,
.
.
.
f(1),f(2),...,f(m),...
f
(
1
)
,
f
(
2
)
,
...
,
f
(
m
)
,
...
sum of digits
number theory
Sequence