Find the smallest positive integer n, such that there exist n integers x1,x2,…,xn (not necessarily different), with 1≤xk≤n, 1≤k≤n, and such that
x_1 + x_2 + \cdots + x_n =\frac{n(n + 1)}{2}, \text{ and }x_1x_2 \cdots x_n = n!,
but {x1,x2,…,xn}={1,2,…,n}. modular arithmeticalgebra unsolvedalgebra