MathDB
Problems
Contests
International Contests
Nordic
1995 Nordic
3
3
Part of
1995 Nordic
Problems
(1)
Σx_1^2=1, inequality with max{x_i}
Source: Nordic Mathematical Contest 1995 #3
10/4/2017
Let
n
≥
2
n \ge 2
n
≥
2
and let
x
1
,
x
2
,
.
.
.
,
x
n
x_1, x_2, ..., x_n
x
1
,
x
2
,
...
,
x
n
be real numbers satisfying
x
1
+
x
2
+
.
.
.
+
x
n
≥
0
x_1 +x_2 +...+x_n \ge 0
x
1
+
x
2
+
...
+
x
n
≥
0
and
x
1
2
+
x
2
2
+
.
.
.
+
x
n
2
=
1
x_1^2+x_2^2+...+x_n^2=1
x
1
2
+
x
2
2
+
...
+
x
n
2
=
1
. Let
M
=
m
a
x
{
x
1
,
x
2
,
.
.
.
,
x
n
}
M = max \{x_1, x_2,... , x_n\}
M
=
ma
x
{
x
1
,
x
2
,
...
,
x
n
}
. Show that
M
≥
1
n
(
n
−
1
)
M \ge \frac{1}{\sqrt{n(n-1)}}
M
≥
n
(
n
−
1
)
1
(1) .When does equality hold in (1)?
inequalities
algebra
maximization