MathDB
Problems
Contests
International Contests
Kvant Problems
Kvant 2022
M2712
M2712
Part of
Kvant 2022
Problems
(1)
Trigonometric inequality
Source: Kvant Magazine No. 8 2022 M2712
3/8/2023
Let
A
B
C
ABC
A
BC
be a triangle, with
∠
A
=
α
,
∠
B
=
β
\angle A=\alpha,\angle B=\beta
∠
A
=
α
,
∠
B
=
β
and
∠
C
=
γ
\angle C=\gamma
∠
C
=
γ
. Prove that
∑
cyc
tan
α
2
tan
β
2
cot
γ
2
⩾
3
.
\sum_{\text{cyc}}\tan \frac{\alpha}{2}\tan\frac{\beta}{2}\cot\frac{\gamma}{2}\geqslant\sqrt{3}.
cyc
∑
tan
2
α
tan
2
β
cot
2
γ
⩾
3
.
Proposed by R. Regimov (Azerbaijan)
Kvant
geometry
trigonometry
inequalities