MathDB
Problems
Contests
International Contests
KoMaL A Problems
KoMaL A Problems 2020/2021
A. 792
A. 792
Part of
KoMaL A Problems 2020/2021
Problems
(1)
All The Possible Remainders
Source: KöMaL A. 792
3/24/2022
Let
p
≥
3
p\geq 3
p
≥
3
be a prime number and
0
≤
r
≤
p
−
3.
0\leq r\leq p-3.
0
≤
r
≤
p
−
3.
Let
x
1
,
x
2
,
…
,
x
p
−
1
+
r
x_1,x_2,\ldots,x_{p-1+r}
x
1
,
x
2
,
…
,
x
p
−
1
+
r
be integers satisfying
∑
i
=
1
p
−
1
+
r
x
i
k
≡
r
m
o
d
p
\sum_{i=1}^{p-1+r}x_i^k\equiv r \bmod{p}
i
=
1
∑
p
−
1
+
r
x
i
k
≡
r
mod
p
for all
1
≤
k
≤
p
−
2.
1\leq k\leq p-2.
1
≤
k
≤
p
−
2.
What are the possible remainders of numbers
x
2
,
x
2
,
…
,
x
p
−
1
+
r
x_2,x_2,\ldots,x_{p-1+r}
x
2
,
x
2
,
…
,
x
p
−
1
+
r
modulo
p
?
p?
p
?
Proposed by Dávid Matolcsi, Budapest
komal
number theory