MathDB
Problems
Contests
International Contests
JBMO ShortLists
2018 JBMO Shortlist
A7
A7
Part of
2018 JBMO Shortlist
Problems
(1)
JBMO 2018. Shortlist Algebra
Source:
7/11/2019
Let
A
A
A
be a set of positive integers satisfying the following :
a
.
)
a.)
a
.
)
If
n
∈
A
n \in A
n
∈
A
, then
n
≤
2018
n \le 2018
n
≤
2018
.
b
.
)
b.)
b
.
)
If
S
⊂
A
S \subset A
S
⊂
A
such that
∣
S
∣
=
3
|S|=3
∣
S
∣
=
3
, then there exists
m
,
n
∈
S
m,n \in S
m
,
n
∈
S
such that
∣
n
−
m
∣
≥
n
+
m
|n-m| \ge \sqrt{n}+\sqrt{m}
∣
n
−
m
∣
≥
n
+
m
What is the maximum cardinality of
A
A
A
?
algebra
Subsets
Sets
cardinality