MathDB
Problems
Contests
International Contests
International Mathematical Olympic Revenge
2018 International Olympic Revenge
2
2
Part of
2018 International Olympic Revenge
Problems
(1)
Problem 2 IMOR 2018
Source: 2nd IMOR - 2018
7/13/2018
Let
G
G
G
be the centroid of a triangle
△
A
B
C
\triangle ABC
△
A
BC
and let
A
G
,
B
G
,
C
G
AG, BG, CG
A
G
,
BG
,
CG
meet its circumcircle at
P
,
Q
,
R
P, Q, R
P
,
Q
,
R
respectively. Let
A
D
,
B
E
,
C
F
AD, BE, CF
A
D
,
BE
,
CF
be the altitudes of the triangle. Prove that the radical center of circles
(
D
Q
R
)
,
(
E
P
R
)
,
(
F
P
Q
)
(DQR),(EPR),(FPQ)
(
D
QR
)
,
(
EPR
)
,
(
FPQ
)
lies on Euler Line of
△
A
B
C
\triangle ABC
△
A
BC
.Proposed by Ivan Chai, Malaysia.
IMOR
geometry