MathDB
Problems
Contests
International Contests
IMO Shortlist
2021 IMO Shortlist
C1
C1
Part of
2021 IMO Shortlist
Problems
(1)
GCD and COMB
Source: 2021 ISL C1
7/12/2022
Let
S
S
S
be an infinite set of positive integers, such that there exist four pairwise distinct
a
,
b
,
c
,
d
∈
S
a,b,c,d \in S
a
,
b
,
c
,
d
∈
S
with
gcd
(
a
,
b
)
≠
gcd
(
c
,
d
)
\gcd(a,b) \neq \gcd(c,d)
g
cd
(
a
,
b
)
=
g
cd
(
c
,
d
)
. Prove that there exist three pairwise distinct
x
,
y
,
z
∈
S
x,y,z \in S
x
,
y
,
z
∈
S
such that
gcd
(
x
,
y
)
=
gcd
(
y
,
z
)
≠
gcd
(
z
,
x
)
\gcd(x,y)=\gcd(y,z) \neq \gcd(z,x)
g
cd
(
x
,
y
)
=
g
cd
(
y
,
z
)
=
g
cd
(
z
,
x
)
.
combinatorics