MathDB
Problems
Contests
International Contests
IMO Shortlist
2019 IMO Shortlist
A5
A5
Part of
2019 IMO Shortlist
Problems
(1)
Sum of products is n mod 2
Source: IMO 2019 SL A5
9/22/2020
Let
x
1
,
x
2
,
…
,
x
n
x_1, x_2, \dots, x_n
x
1
,
x
2
,
…
,
x
n
be different real numbers. Prove that
∑
1
⩽
i
⩽
n
∏
j
≠
i
1
−
x
i
x
j
x
i
−
x
j
=
{
0
,
if
n
is even;
1
,
if
n
is odd.
\sum_{1 \leqslant i \leqslant n} \prod_{j \neq i} \frac{1-x_{i} x_{j}}{x_{i}-x_{j}}=\left\{\begin{array}{ll} 0, & \text { if } n \text { is even; } \\ 1, & \text { if } n \text { is odd. } \end{array}\right.
1
⩽
i
⩽
n
∑
j
=
i
∏
x
i
−
x
j
1
−
x
i
x
j
=
{
0
,
1
,
if
n
is even;
if
n
is odd.
algebra
Product
IMO Shortlist
IMO Shortlist 2019
determinant