MathDB
Problems
Contests
International Contests
IMO Shortlist
2018 IMO Shortlist
A6
A6
Part of
2018 IMO Shortlist
Problems
(1)
A special polynomial condition
Source: Shortlist 2018 A6
7/17/2019
Let
m
,
n
≥
2
m,n\geq 2
m
,
n
≥
2
be integers. Let
f
(
x
1
,
…
,
x
n
)
f(x_1,\dots, x_n)
f
(
x
1
,
…
,
x
n
)
be a polynomial with real coefficients such that
f
(
x
1
,
…
,
x
n
)
=
⌊
x
1
+
⋯
+
x
n
m
⌋
for every
x
1
,
…
,
x
n
∈
{
0
,
1
,
…
,
m
−
1
}
.
f(x_1,\dots, x_n)=\left\lfloor \frac{x_1+\dots + x_n}{m} \right\rfloor\text{ for every } x_1,\dots, x_n\in \{0,1,\dots, m-1\}.
f
(
x
1
,
…
,
x
n
)
=
⌊
m
x
1
+
⋯
+
x
n
⌋
for every
x
1
,
…
,
x
n
∈
{
0
,
1
,
…
,
m
−
1
}
.
Prove that the total degree of
f
f
f
is at least
n
n
n
.
algebra
polynomial
IMO Shortlist