MathDB
Problems
Contests
International Contests
IMO Shortlist
2018 IMO Shortlist
A1
A1
Part of
2018 IMO Shortlist
Problems
(1)
Rational FEs
Source: IMO Shortlist 2018 A1
7/17/2019
Let
Q
>
0
\mathbb{Q}_{>0}
Q
>
0
denote the set of all positive rational numbers. Determine all functions
f
:
Q
>
0
→
Q
>
0
f:\mathbb{Q}_{>0}\to \mathbb{Q}_{>0}
f
:
Q
>
0
→
Q
>
0
satisfying
f
(
x
2
f
(
y
)
2
)
=
f
(
x
)
2
f
(
y
)
f(x^2f(y)^2)=f(x)^2f(y)
f
(
x
2
f
(
y
)
2
)
=
f
(
x
)
2
f
(
y
)
for all
x
,
y
∈
Q
>
0
x,y\in\mathbb{Q}_{>0}
x
,
y
∈
Q
>
0
IMO Shortlist
algebra
functional equation