An integer n≥3 is given. We call an n-tuple of real numbers (x1,x2,…,xn) Shiny if for each permutation y1,y2,…,yn of these numbers, we have
i=1∑n−1yiyi+1=y1y2+y2y3+y3y4+⋯+yn−1yn≥−1.
Find the largest constant K=K(n) such that
1≤i<j≤n∑xixj≥K
holds for every Shiny n-tuple (x1,x2,…,xn). algebrainequalitiesIMO Shortlist