Let a1,a2,…an,k, and M be positive integers such that
\frac{1}{a_1}+\frac{1}{a_2}+\cdots+\frac{1}{a_n}=k \text{and} a_1a_2\cdots a_n=M.
If M>1, prove that the polynomial
P(x)=M(x+1)k−(x+a1)(x+a2)⋯(x+an)
has no positive roots. IMO Shortlistalgebrapolynomial