Let a1<a2<⋯<an be pairwise coprime positive integers with a1 being prime and a1≥n+2. On the segment I=[0,a1a2⋯an] of the real line, mark all integers that are divisible by at least one of the numbers a1,…,an . These points split I into a number of smaller segments. Prove that the sum of the squares of the lengths of these segments is divisible by a1.Proposed by Serbia IMO Shortlistnumber theoryDivisibilityHi