Let n be a positive integer, and consider a sequence a1,a2,…,an of positive integers. Extend it periodically to an infinite sequence a1,a2,… by defining an+i=ai for all i≥1. If a1≤a2≤⋯≤an≤a1+n and a_{a_i } \le n+i-1 \text{for} i=1,2,\dotsc, n, prove that a1+⋯+an≤n2. algebrainequalitiesIMO ShortlistSequenceIMO shortlist 2013A4