MathDB
Problems
Contests
International Contests
IMO Shortlist
2013 IMO Shortlist
A2
A2
Part of
2013 IMO Shortlist
Problems
(1)
IMO Shortlist 2013, Algebra #2
Source: IMO Shortlist 2013, Algebra #2
7/9/2014
Prove that in any set of
2000
2000
2000
distinct real numbers there exist two pairs
a
>
b
a>b
a
>
b
and
c
>
d
c>d
c
>
d
with
a
≠
c
a \neq c
a
=
c
or
b
≠
d
b \neq d
b
=
d
, such that
∣
a
−
b
c
−
d
−
1
∣
<
1
100000
.
\left| \frac{a-b}{c-d} - 1 \right|< \frac{1}{100000}.
c
−
d
a
−
b
−
1
<
100000
1
.
algebra
binomial theorem
pigeonhole principle
IMO Shortlist