MathDB
Problems
Contests
International Contests
IMO Shortlist
1990 IMO Shortlist
5
5
Part of
1990 IMO Shortlist
Problems
(1)
GIH>90
Source: IMO ShortList 1990, Problem 5 (FRA 1)
5/31/2005
Given a triangle
A
B
C
ABC
A
BC
. Let
G
G
G
,
I
I
I
,
H
H
H
be the centroid, the incenter and the orthocenter of triangle
A
B
C
ABC
A
BC
, respectively. Prove that
∠
G
I
H
>
9
0
∘
\angle GIH > 90^{\circ}
∠
G
I
H
>
9
0
∘
.
geometry
incenter
vector
Euler
trigonometry
orthocenter
IMO Shortlist