MathDB
Problems
Contests
International Contests
IMO Shortlist
1985 IMO Shortlist
7
7
Part of
1985 IMO Shortlist
Problems
(1)
P/p^k is not less than n!
Source:
8/29/2010
The positive integers
x
1
,
⋯
,
x
n
x_1, \cdots , x_n
x
1
,
⋯
,
x
n
,
n
≥
3
n \geq 3
n
≥
3
, satisfy
x
1
<
x
2
<
⋯
<
x
n
<
2
x
1
x_1 < x_2 <\cdots< x_n < 2x_1
x
1
<
x
2
<
⋯
<
x
n
<
2
x
1
. Set
P
=
x
1
x
2
⋯
x
n
.
P = x_1x_2 \cdots x_n.
P
=
x
1
x
2
⋯
x
n
.
Prove that if
p
p
p
is a prime number,
k
k
k
a positive integer, and
P
P
P
is divisible by
p
k
pk
p
k
, then
P
p
k
≥
n
!
.
\frac{P}{p^k} \geq n!.
p
k
P
≥
n
!
.
number theory
Sequence
Prime number
Inequality
IMO Shortlist