MathDB
Problems
Contests
International Contests
IMO Shortlist
1983 IMO Shortlist
19
19
Part of
1983 IMO Shortlist
Problems
(1)
Polynomial of degree 990
Source:
9/9/2010
Let
(
F
n
)
n
≥
1
(F_n)_{n\geq 1}
(
F
n
)
n
≥
1
be the Fibonacci sequence
F
1
=
F
2
=
1
,
F
n
+
2
=
F
n
+
1
+
F
n
(
n
≥
1
)
,
F_1 = F_2 = 1, F_{n+2} = F_{n+1} + F_n (n \geq 1),
F
1
=
F
2
=
1
,
F
n
+
2
=
F
n
+
1
+
F
n
(
n
≥
1
)
,
and
P
(
x
)
P(x)
P
(
x
)
the polynomial of degree
990
990
990
satisfying
P
(
k
)
=
F
k
,
for
k
=
992
,
.
.
.
,
1982.
P(k) = F_k, \qquad \text{ for } k = 992, . . . , 1982.
P
(
k
)
=
F
k
,
for
k
=
992
,
...
,
1982.
Prove that
P
(
1983
)
=
F
1983
−
1.
P(1983) = F_{1983} - 1.
P
(
1983
)
=
F
1983
−
1.
algebra
polynomial
Fibonacci
Fibonacci sequence
Sequence
IMO Shortlist