Let f:[0,1]→R be continuous and satisfy:
\begin{cases}bf(2x) = f(x), &\mbox{ if } 0 \leq x \leq 1/2,\\ f(x) = b + (1 - b)f(2x - 1), &\mbox{ if } 1/2 \leq x \leq 1,\end{cases}
where b=2+c1+c, c>0. Show that 0<f(x)−x<c for every x,0<x<1. algebrafunctional equationcontinuous functionIMO Shortlist