MathDB
Problems
Contests
International Contests
IMO Shortlist
1983 IMO Shortlist
10
10
Part of
1983 IMO Shortlist
Problems
(1)
There exists an interval I
Source: IMO Longlist 1983, Problem 23
9/9/2010
Let
p
p
p
and
q
q
q
be integers. Show that there exists an interval
I
I
I
of length
1
/
q
1/q
1/
q
and a polynomial
P
P
P
with integral coefficients such that
∣
P
(
x
)
−
p
q
∣
<
1
q
2
\left|P(x)-\frac pq \right| < \frac{1}{q^2}
P
(
x
)
−
q
p
<
q
2
1
for all
x
∈
I
.
x \in I.
x
∈
I
.
algebra
polynomial
approximation
number theory
rational number
IMO Shortlist