MathDB
Problems
Contests
International Contests
IMO Shortlist
1977 IMO Shortlist
6
6
Part of
1977 IMO Shortlist
Problems
(1)
Integer solutions of the system of inequalities
Source:
9/20/2010
Let
n
n
n
be a positive integer. How many integer solutions
(
i
,
j
,
k
,
l
)
,
1
≤
i
,
j
,
k
,
l
≤
n
(i, j, k, l) , \ 1 \leq i, j, k, l \leq n
(
i
,
j
,
k
,
l
)
,
1
≤
i
,
j
,
k
,
l
≤
n
, does the following system of inequalities have:
1
≤
−
j
+
k
+
l
≤
n
1 \leq -j + k + l \leq n
1
≤
−
j
+
k
+
l
≤
n
1
≤
i
−
k
+
l
≤
n
1 \leq i - k + l \leq n
1
≤
i
−
k
+
l
≤
n
1
≤
i
−
j
+
l
≤
n
1 \leq i - j + l \leq n
1
≤
i
−
j
+
l
≤
n
1
≤
i
+
j
−
k
≤
n
?
1 \leq i + j - k \leq n \ ?
1
≤
i
+
j
−
k
≤
n
?
combinatorics
algebra
counting
inequality system
IMO Shortlist