Let n be an integer greater than 1. Definex1=n,y1=1,xi+1=[2xi+yi],yi+1=[xi+1n],for i=1,2,… ,where [z] denotes the largest integer less than or equal to z. Prove that
min{x1,x2,…,xn}=[n] algebrarecurrence relationSequenceequationfloor functionIMO Shortlist