Let a0,a1,…,an,an+1 be a sequence of real numbers satisfying the following conditions:a0=an+1=0, |a_{k-1} - 2a_k + a_{k+1}| \leq 1 (k = 1, 2,\ldots , n).
Prove that |a_k| \leq \frac{k(n+1-k)}{2} (k = 0, 1,\ldots ,n + 1). InequalityConvexitySequencerecurrence relationIMO Shortlist