MathDB
Problems
Contests
International Contests
IMO Shortlist
1975 IMO Shortlist
4
4
Part of
1975 IMO Shortlist
Problems
(1)
Sequence inequality - a_n - 2a_{n+1} + a_{n+2} ≤ 0
Source:
9/21/2010
Let
a
1
,
a
2
,
…
,
a
n
,
…
a_1, a_2, \ldots , a_n, \ldots
a
1
,
a
2
,
…
,
a
n
,
…
be a sequence of real numbers such that
0
≤
a
n
≤
1
0 \leq a_n \leq 1
0
≤
a
n
≤
1
and
a
n
−
2
a
n
+
1
+
a
n
+
2
≥
0
a_n - 2a_{n+1} + a_{n+2} \geq 0
a
n
−
2
a
n
+
1
+
a
n
+
2
≥
0
for
n
=
1
,
2
,
3
,
…
n = 1, 2, 3, \ldots
n
=
1
,
2
,
3
,
…
. Prove that
0
≤
(
n
+
1
)
(
a
n
−
a
n
+
1
)
≤
2
for
n
=
1
,
2
,
3
,
…
0 \leq (n + 1)(a_n - a_{n+1}) \leq 2 \qquad \text{ for } n = 1, 2, 3, \ldots
0
≤
(
n
+
1
)
(
a
n
−
a
n
+
1
)
≤
2
for
n
=
1
,
2
,
3
,
…
inequality system
Sequence
Convexity
algebra
IMO Shortlist