Let Tk=k−1 for k=1,2,3,4 and
T2k−1=T2k−2+2k−2,T2k=T2k−5+2k(k≥3).
Show that for all k,
1 + T_{2n-1} = \left[ \frac{12}{7}2^{n-1} \right] \text{and} 1 + T_{2n} = \left[ \frac{17}{7}2^{n-1} \right],
where [x] denotes the greatest integer not exceeding x. algebraSequencerecurrence relationLinear RecurrencesIMO Shortlist