MathDB
Problems
Contests
International Contests
IMO Shortlist
1971 IMO Shortlist
11
11
Part of
1971 IMO Shortlist
Problems
(1)
Matrix satisfy the inequality, prove the other inequality
Source:
9/22/2010
The matrix
A
=
(
a
11
…
a
1
n
⋮
…
⋮
a
n
1
…
a
n
n
)
A=\begin{pmatrix} a_{11} & \ldots & a_{1n} \\ \vdots & \ldots & \vdots \\ a_{n1} & \ldots & a_{nn} \end{pmatrix}
A
=
a
11
⋮
a
n
1
…
…
…
a
1
n
⋮
a
nn
satisfies the inequality
∑
j
=
1
n
∣
a
j
1
x
1
+
⋯
+
a
j
n
x
n
∣
≤
M
\sum_{j=1}^n |a_{j1}x_1 + \cdots+ a_{jn}x_n| \leq M
∑
j
=
1
n
∣
a
j
1
x
1
+
⋯
+
a
jn
x
n
∣
≤
M
for each choice of numbers
x
i
x_i
x
i
equal to
±
1
\pm 1
±
1
. Show that
∣
a
11
+
a
22
+
⋯
+
a
n
n
∣
≤
M
.
|a_{11} + a_{22} + \cdots+ a_{nn}| \leq M.
∣
a
11
+
a
22
+
⋯
+
a
nn
∣
≤
M
.
linear algebra
matrix
Inequality
combinatorial inequality
IMO Shortlist