MathDB
Problems
Contests
International Contests
IMO Shortlist
1968 IMO Shortlist
21
21
Part of
1968 IMO Shortlist
Problems
(1)
Find all positive integers k - ISL 1968
Source:
9/23/2010
Let
a
0
,
a
1
,
…
,
a
k
(
k
≥
1
)
a_0, a_1, \ldots , a_k \ (k \geq 1)
a
0
,
a
1
,
…
,
a
k
(
k
≥
1
)
be positive integers. Find all positive integers
y
y
y
such that
a
0
∣
y
,
(
a
0
+
a
1
)
∣
(
y
+
a
1
)
,
…
,
(
a
0
+
a
n
)
∣
(
y
+
a
n
)
.
a_0 | y, (a_0 + a_1) | (y + a1), \ldots , (a_0 + a_n) | (y + a_n).
a
0
∣
y
,
(
a
0
+
a
1
)
∣
(
y
+
a
1
)
,
…
,
(
a
0
+
a
n
)
∣
(
y
+
a
n
)
.
number theory
Divisibility
IMO Shortlist