1
Part of 1967 IMO Shortlist
Problems(5)
All numbers are exact cubes
Source: IMO Longlist 1967, Bulgaria 1
10/14/2005
Prove that all numbers of the sequence \frac{107811}{3}, \frac{110778111}{3}, \frac{111077781111}{3}, \ldots are exact cubes.
algebranumber theorydecimal representationperfect cubeIMO ShortlistIMO Longlist
IMO LongList 1967, Mongolia 1
Source: IMO LongList 1967, Mongolia 1
12/16/2004
Given numbers: , determine the number of pairs for which where is a non-negative integer.
combinatoricscountingIMO ShortlistIMO Longlist
IMO LongList 1967, Romania 1
Source: IMO LongList 1967, Romania 1
12/16/2004
Decompose the expression into real factors:
trigonometryalgebraTrigonometric EquationsfactorizationIMO ShortlistIMO Longlist
IMO LongList 1967, Sweden 1
Source: IMO LongList 1967, Sweden 1
12/16/2004
Determine all positive roots of the equation
algebraequationrootsIMO ShortlistIMO LonglistExponential equation
IMO LongList 1967, The Democratic Republic Of Germany 1
Source: IMO LongList 1967, The Democratic Republic Of Germany 1
12/16/2004
Find whether among all quadrilaterals, whose interiors lie inside a semi-circle of radius , there exist one (or more) with maximum area. If so, determine their shape and area.
geometryquadrilateralareamaximizationIMO ShortlistIMO Longlist