MathDB
Problems
Contests
International Contests
IMO Longlists
1992 IMO Longlists
68
68
Part of
1992 IMO Longlists
Problems
(1)
Trigonometric equation
Source:
9/1/2010
Show that the numbers
tan
(
r
π
15
)
\tan \left(\frac{r \pi }{15}\right)
tan
(
15
r
π
)
, where
r
r
r
is a positive integer less than
15
15
15
and relatively prime to
15
15
15
, satisfy
x
8
−
92
x
6
+
134
x
4
−
28
x
2
+
1
=
0.
x^8 - 92x^6 + 134x^4 - 28x^2 + 1 = 0.
x
8
−
92
x
6
+
134
x
4
−
28
x
2
+
1
=
0.
trigonometry
number theory
relatively prime
algebra
equation
IMO Shortlist
IMO Longlist