MathDB
Problems
Contests
International Contests
IMO Longlists
1992 IMO Longlists
37
37
Part of
1992 IMO Longlists
Problems
(1)
Prove that A+B+C < pi
Source:
9/2/2010
Let the circles
C
1
,
C
2
C_1, C_2
C
1
,
C
2
, and
C
3
C_3
C
3
be orthogonal to the circle
C
C
C
and intersect each other inside
C
C
C
forming acute angles of measures
A
,
B
A, B
A
,
B
, and
C
C
C
. Show that
A
+
B
+
C
<
π
.
A + B +C < \pi.
A
+
B
+
C
<
π
.
geometry
circles
Trigonometric inequality
angles
IMO Shortlist
IMO Longlist