MathDB
Problems
Contests
International Contests
IMO Longlists
1992 IMO Longlists
34
34
Part of
1992 IMO Longlists
Problems
(1)
Prove that p_1, q_1, r_1, p_2, q_2, r_2 exist
Source:
9/2/2010
Let
a
,
b
,
c
a, b, c
a
,
b
,
c
be integers. Prove that there are integers
p
1
,
q
1
,
r
1
,
p
2
,
q
2
,
r
2
p_1, q_1, r_1, p_2, q_2, r_2
p
1
,
q
1
,
r
1
,
p
2
,
q
2
,
r
2
such that
a
=
q
1
r
2
−
q
2
r
1
,
b
=
r
1
p
2
−
r
2
p
1
,
c
=
p
1
q
2
−
p
2
q
1
.
a = q_1r_2 - q_2r_1, b = r_1p_2 - r_2p_1, c = p_1q_2 - p_2q_1.
a
=
q
1
r
2
−
q
2
r
1
,
b
=
r
1
p
2
−
r
2
p
1
,
c
=
p
1
q
2
−
p
2
q
1
.
linear algebra
number theory
system of equations
Additive Number Theory
IMO Shortlist
IMO Longlist